Haloalkanes

1(a). This question is about the alcohols A-F shown below.

Alcohol **A** can be prepared by the alkaline hydrolysis of the bromoalkane, (CH₃)₂CHCH₂CH₂Br. The hydrolysis with aqueous NaOH is shown in **equation 5.1**.

A student gently heats a mixture of (CH₃)₂CHCH₂CH₂Br and NaOH(aq) for 25 minutes.

i. Calculate the atom economy for the preparation of alcohol A in equation 5.1.

ii. Outline the mechanism for the alkaline hydrolysis of (CH₃)₂CHCH₂CH₂Br. The structure of (CH₃)₂CHCH₂CH₂Br has been provided.

Show curly arrows, relevant lone pairs and dipoles, and the products.

[3]

iii. Name this type of mechanism.

____[1]

[2]

State a differ.	and explain how the rates of hydrolysis of the chloroalkane and the bromoalkane would
This qu	uestion is about 1-iodopentane, CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ I.
1-lodo	pentane can be hydrolysed by aqueous sodium hydroxide.
i.	Outline the mechanism for this reaction.
	Include curly arrows, relevant dipoles and the final product(s).
CH	H ₃ CH ₂ CH ₂ CH ₂ —C — I — — H
ii.	1-lodopentane can also be hydrolysed by water using aqueous silver nitrate, with e as the solvent.
	A student uses this method to compare the rates of hydrolysis of 1-iodopentane and bromopentane.
	What measurement and observation would allow the student to compare the rates hydrolysis?
iii.	1-lodopentane was found to react faster than 1-bromopentane.
	Explain why.

- 3. An alcohol can be prepared by hydrolysing the haloalkane $C_2H_5CHBrCH_3$ with aqueous sodium hydroxide.
 - i. Outline the mechanism for this reaction.

Show curly arrows and relevant dipoles.

[3]

ii. The infrared (IR) spectrum for $C_2H_5CHBrCH_3$ is shown in **Fig. 25.2**. The C-Br bond absorption is labelled.

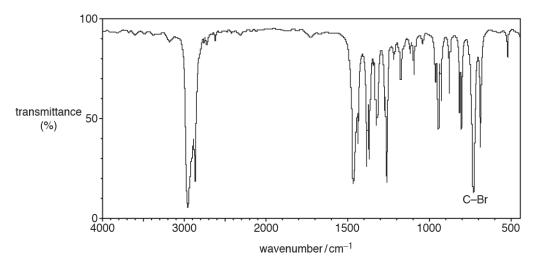


Fig. 25.2

Outline how IR spectroscopy could be used to show that the bromoalkane functional group has reacted and that the alcohol functional group has formed.

[2]

4(a). This question is about the hydrolysis of haloalkanes.

State and explain how the halogen in the haloalkane affects the rate of hydrolysis.

The rate of hydrolysis of a haloalkane depends on the halogen present.

[2]	

(b). Chlorocyclohexane is hydrolysed with aqueous sodium hydroxide.

Outline the mechanism for this reaction.

Show curly arrows, relevant dipoles and the products.

[3]

- (c). A student hydrolyses a haloalkane, **E**, using the following method.
 - 0.0100 mol of haloalkane E is refluxed with excess NaOH(aq) to form a reaction mixture containing an organic product F.
 - The reaction mixture is neutralised with dilute nitric acid.
 - Excess AgNO₃(aq) is added to the reaction mixture. 1.88 g of a precipitate **G** forms.

Organic product, **F**, has a molar mass of 74.0 g mol⁻¹ and has a chiral carbon atom.

 Draw a labelled diagram to show how the student would carry out the hydrolysis of haloalkane E. ii. Analyse the information to identify E, F and G.Show your working.

[3]

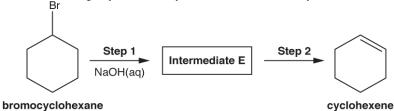
5. Alcohols are used in organic synthesis.

Pentan-2-ol can be prepared by the alkaline hydrolysis of 2-iodopentane. $CH_3CH(I)CH_2CH_2CH_3 + NaOH \rightarrow CH_3CH(OH)CH_2CH_3 + NaI$

The reaction mixture is boiled for 20 minutes.

 State the most appropriate technique that could be used to boil the reaction mixture for 20 minutes.

______[1]


ii. Describe the mechanism for the alkaline hydrolysis of 2-iodopentane.In your answer, include the name of the mechanism, curly arrows and relevant dipoles.

name of mechanism:

[4]

6. Organic compounds can be prepared in the laboratory using synthetic routes with two or more stages.

A student devises a two-stage synthesis of cyclohexene from bromocyclohexane.

i.	Suggest the structure of intermediate E and the reagent(s) and conditions for step 2.
	reagent(s) and conditions
ii.	The student carries out this synthesis and obtains 1.23 g of pure cyclohexene from 5.50 g of bromocyclohexane.
	Calculate the percentage yield of cyclohexene.
	Give your final answer to an appropriate number of significant figures.
	percentage yield = % [3]

7(a).

i.

hydroxide.

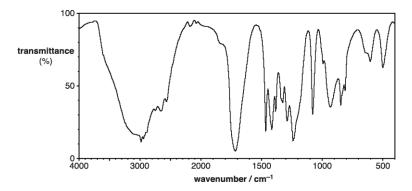
		Include curly arrows, relevant dipoles and the structure of the organic product.	
		[3]	
	ii.	Name the type of mechanism in (i).	
		[1	1
	iii.	The organic product in (i) can be formed faster using a different haloalkane than 1-bromobutane.	
		Identify this haloalkane.	
		Explain your answer.	
		Haloalkane	
		i raioainane	
		Explanation	
		[1	1
		of some haloalkanes, such as chlorotrifluoromethane, has been banned as they form C/ • which break down ozone.	
rad	licals \		
rad	licals \	which break down ozone. Construct an equation to show the formation of C/ • radicals from chlorotrifluoromethane.	1
rad	i.	which break down ozone. Construct an equation to show the formation of C/ • radicals from chlorotrifluoromethane.	1.
rad	i.	which break down ozone. Construct an equation to show the formation of C/ • radicals from chlorotrifluoromethane. [1] Ozone is broken down by C/ • radicals in a two-step process.	1.
rad	i.	which break down ozone. Construct an equation to show the formation of C/ • radicals from chlorotrifluoromethane. [1] Ozone is broken down by C/ • radicals in a two-step process. Write the equations for the two steps and the overall equation for this process.	1.
rad	i.	which break down ozone. Construct an equation to show the formation of C/ • radicals from chlorotrifluoromethane. [1] Ozone is broken down by C/ • radicals in a two-step process.	1.
rad	i. i.	which break down ozone. Construct an equation to show the formation of C/ • radicals from chlorotrifluoromethane. [1] Ozone is broken down by C/ • radicals in a two-step process. Write the equations for the two steps and the overall equation for this process. Step 1 Step 2	1.
rad	i.	which break down ozone. Construct an equation to show the formation of C/ • radicals from chlorotrifluoromethane. [1] Ozone is broken down by C/ • radicals in a two-step process. Write the equations for the two steps and the overall equation for this process. Step 1	1.

Outline the mechanism of the reaction of 1-bromobutane with aqueous sodium

Haloalkanes are hydrolysed by aqueous sodium hydroxide.

iii.

	number of O ₃ molecules =
8(a).	A student was provided with a mixture of two structural isomers. Each isomer has the percentage composition by mass C, 29.29%; H, 5.70%; Br, 65.01%. The relative molecular mass of each isomer is less than 150.
	Determine the structures of the two structural isomers.
	Show your working.
	In your answer you should link the evidence with your explanation.
	[5]


A research chemist found that 1.00 g of C/ • radicals can breakdown 135 kg of O₃.

Calculate the number of O_3 molecules removed by one CI • radical.

Give your answer in **standard form** and to **three** significant figures.

(b). The student heats the mixture of the two structural isomers from **(a)** under reflux with aqueous sodium hydroxide to form two compounds, **E** and **F**. The student separates the two compounds.

Compound ${\bf E}$ is heated under reflux with acidified potassium dichromate(VI) to form compound ${\bf G}$, which gives the infrared spectrum below.

i. Analyse the information and spectrum to determine the structures of E, F and G.
 Include an equation for the formation of G from E.

B	In your answer you should link the evidence with your explanation.

mpound G is hean accentrated sulfuring the structure contractions.	ted with cor	 mpound F ir				
ncentrated sulfuri	ted with cor c acid to for	npound F ir				
aw the structure o		organio c	ompound H		amount of	
	of the organi	ic compoun	d H .			
sphere, nitrogen	oxides can	catalyse the	e breakdowr	of ozone.		
te two sources o	f nitrogen o	xides in the	stratospher	Э.		
te equations to s	how how nit	trogen mon	oxide catalys	ses the brea	kdown of oz	zone.
a -	ate two sources o	ate two sources of nitrogen o	ate two sources of nitrogen oxides in the	ate two sources of nitrogen oxides in the stratosphere		

- **10.** Alcohols can be prepared from halogenoalkanes. 2,2-dimethylpropan-1-ol can be prepared by hydrolysis of a chloroalkane with aqueous sodium hydroxide.
 - i. Write the equation for this reaction.

Use structures for the organic compounds.

[1]

ii. Outline the mechanism for this reaction.

Show curly arrows and relevant dipoles.

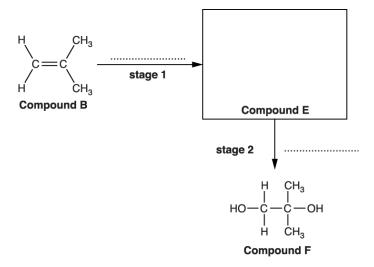
[2]

11. Compound **B**, shown below, can be used to synthesise organic compounds with different functional groups.

Compound B

The structure of compound **F** is shown below.

Compound F


i. What is the empirical formula of compound F?

[2]

ii. A student plans a two-stage synthesis for preparing compound **F** from compound **B**.

The synthesis first prepares compound **E**, as shown in the flowchart.

Draw the structure of compound ${\bf E}$ in the box and state the reagents for each stage on the dotted lines.

[3]

12. Nitrogen forms several different oxides.

N₂O is a useful anaesthetic and NO has been linked to the depletion of ozone in the stratosphere.

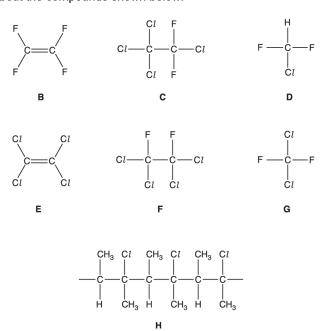
NO radicals catalyse the breakdown of ozone in the stratosphere.

Write **two** equations to show how NO radicals catalyse this breakdown.

 [2]

13(a). Reaction mechanisms use curly arrows and can involve electrophiles and nucleophiles.

i.	What does a <i>curly arrow</i> represent in mechanisms?	
		[1]
ii.	What is meant by the term <i>nucleophile</i> ?	
		[1]

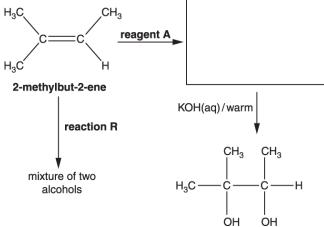

(b).

	i.	Outline the mechanism of this reaction. Include curly arrows, relevant dipoles and final product(s).
	ii. 	[3] Name the type of mechanism.
(c).	Allyl bro	omide, CH ₂ =CHCH ₂ Br, is used in the production of polymers. omide is reacted as shown below. HCH ₂ Br $\xrightarrow{\text{step 1}}$ CH ₃ CH ₂ CH ₂ Br $\xrightarrow{\text{cl}_2}$ mixture of organic products 1-bromopropane
	i. 	In step 2, 1-bromopropane reacts with chlorine by radical substitution. Outline the mechanism for the monochlorination of 1-bromopropane. In your mechanism, you can show the formula of 1-bromopropane as C ₃ H ₇ Br. Include the names of the three stages in this mechanism, state the essential conditions and all termination steps.

Allyl bromide, CH₂=CHCH₂Br, reacts with aqueous sodium hydroxide.

		<u>ାଧ</u>
iii.	Radical substitution produces a mixture of organic products.	
	Suggest two reasons why.	
		[2]

14. This question is about the compounds shown below.


Compound ${\bf G}$ was once used as a propellant in aerosols. Compound ${\bf G}$ has been linked with depletion of the ozone layer in the stratosphere.

i.	State two properties that made compound G suitable for use as an aerosol.	
	1	
	2	
		[1]

ii.	Explain the following statements, using equations where appropriate. o Life on Earth benefits from the presence of an ozone layer. o The concentration of ozone is maintained in the ozone layer. c Compound G produces radicals which catalyse the breakdown of ozone.	
iii.	Alternative 'ozone-friendly' compounds are now used as propellants instead of compound ${\bf G}$.	
	Which compound, B to H , might be suitable as an 'ozone-friendly' propellant?	
	hemical explanations for the following statements.	
The ra	te of hydrolysis of 1-bromobutane is faster than that of 1-chlorobutane.	

16(a). The flowchart shows how 2-methylbut-2-ene can be converted into a number of organic products.

Complete the flowchart by drawing an organic structure in the box below.

[1]

(b).	Identify	reagent A.	
			[1]
(c).	In the f	lowchart, reaction R forms a mixture of two alcohols that are structural isomers of Ce	5H12O.
	i.	State the reagents and conditions needed for reaction R .	
			[1]
	ii.	What is meant by the term structural isomers?	
			[1]
	iii.	Draw the two structural isomers of $C_5H_{12}O$ formed in reaction R .	
			[2]
	iv.	Suggest why 2-methylbut-2-ene is less soluble in water than either of the structural isomers formed.	

17(a).	1-Bromobutane, CH ₃ CH ₂ CH ₂ CH ₂ Br, reacts with methoxide ions, CH ₃ O ⁻ , by nucleophilic substitution.		
	Suggest how the methoxide ion can act as a nucleophile.		
		[1]	
(b).	Using the 'curly arrow' model, suggest the mechanism for this reaction.		
	Show any relevant dipoles.		
		[3]	
(c).	1-lodobutane also reacts with methoxide ions.		
	Indicate, by placing a tick in one of the boxes, how the use of 1-iodobutane would affect the ra of reaction compared with that of 1-bromobutane.	ite	
	1-lodobutane does not change the rate		
	1-lodobutane increases the rate 1-lodobutane decreases the rate		
	Explain your answer.		
		[1]	
(d).	The ethanoate ion, CH ₃ COO ⁻ acts as a nucleophile when reacting with 1-bromobutane in a substitution reaction.		
	Draw the skeletal formula and give the name of the organic product formed in this reaction.		
	skeletal formula		
	name of product[2	2]	

18(a). Ethers are a homologous series of organic compounds containing the R-O-R functional group.

The structures and names of two ethers are shown in Fig. 4.1.

Fig. 4.1

Draw the **skeletal** formula of the ether, 2-ethoxy-3-methylbutane.

[1]

- (b). Ethers can be prepared by nucleophilic substitution of haloalkanes with alkoxide ions, RO⁻.
 - i. Alkoxide ions can be prepared by reacting sodium with an alcohol. A gas is also formed.
 Write an equation for the formation of methoxide ions from sodium and an alcohol.

_____[1]

ii. Methoxyethane, shown in **Fig. 4.1**, can be prepared by reacting bromoethane, CH_3CH_2Br , with methoxide ions, CH_3O^- .

Suggest the mechanism for the nucleophilic substitution of CH₃CH₂Br with CH₃O⁻.

Show curly arrows, charges, relevant dipoles, and products.

[3]

iii. In this mechanism, explain how $\text{CH}_3\text{O}^{\scriptscriptstyle{-}}$ ions have acted as a nucleophile.

State the type of bond fission that takes place.

(c). 2-Ethoxypropane, shown in Fig. 4.1, is analysed by ¹H NMR spectroscopy.

Complete the table to predict the ¹H NMR spectrum of 2-ethoxypropane. You may **not** need to use all the rows.

Chemical shift, δ/ppm	Relative peak area	Splitting pattern

[4]

(d). In organic reactions, alkoxide ions can also act as a base.

The diagram below shows an incomplete mechanism for the reaction of a diester with methoxide ions, CH_3O^- (**Step 1**), followed by reaction of the intermediate with bromoethane (**Step 2**).

i. For **Step 1**, add curly arrows to show how CH₃O⁻ reacts with the diester to form the intermediate.

In the box, draw the structure of the organic product formed in Step 2.

ii. Explain how CH₃O⁻ ions have acted as a base in this mechanism.

19. Haloalkanes can undergo hydrolysis.

A student carries out an experiment to find the relative rate of hydrolysis of 1-chloropropane, C₃H₇Cl, 1-bromopropane, C₃H₇Br, and 1-iodopropane, C₃H₇I.

The student adds 2 $\rm cm^3$ of ethanol to 2 $\rm cm^3$ of aqueous silver nitrate to three test tubes labelled **A**, **B** and **C**.

The student adds 5 drops of a different haloalkane to each test-tube in rapid succession and shakes each tube. The student measures the time for a precipitate to form in each test-tube.

The results are shown below.

Test tube	Haloalkane	Time taken for reaction to take place
Α	C ₃ H ₇ CI	about half an hour
В	C ₃ H ₇ Br	a few minutes
С	C ₃ H ₇ I	a few seconds

Write an ionic equation involving aqueous silver nitrate for formation of one of the

		precipitates.	
			[1]
ii.	-	What do the experimental results tell you about the carbon-halogen bond enthalpies?	
			[1]
iii.		How could the student modify their experiment so that it could be completed in less time?	
			[1]

END OF QUESTION PAPER